CANET-I/II CAN 转以太网适配器使用说明书 (创新的高速智能 CAN 接口卡) 版本: V2.0

目 录

	7.	2
日	来 	2
弔⁻	一	3
	1.1 产品概述	3
	1.2 性能指标	3
	1.3 应用领域	3
	1.4 订购信息	3
	1.5 产品销售清单	4
	1.6 技术支持与服务	4
第	二章 硬件连接	5
	2.1 硬件接口描述	5
	2.2 系统连接	5
	2.3 总线终端电阻	6
第	三章 参数设置	7
	3.1 PC 机与模块网段检测	7
	3.2 Windows98/Me 网络设置	7
	3.3 Windows2000 网络设置	7
	3.3.1 增加本机 IP 地址	7
	3.3.2 修改本机 IP 地址	9
	3.4 配置软件 CANET-I/II Config	10
	3.4.1 软件操作	10
	3.2.2 设备参数描述	11
	3.4 测试软件 CANET-I/II Tester	12
第[四章 通信转换规约	13
> • F	□中····································	13
	4.2 软件编程示例	14
	光盘中附带 VC, BC 例程源代码。	14
附号		15
1111	·	

第一章 产品简介

1.1 产品概述

CANET-I/CANET-II 高性能CAN转以太网适配器,集成了一路CAN-bus 接口(CANET-I)或两路 CAN-bus 接口(CANET-II)和EtherNet 接口以及TCP/IP 协议栈,用户利于它可以轻松完成CAN-bus 网络和EtherNet 网络的互连互通,进一步拓展CAN-bus 网络的范围。

CANET-I/II CAN转以太网适配器每路CAN通道都集成完全的电气隔离保护、防浪涌保护,抗干扰能力强,是一款性能稳定、通讯可靠的CAN以太网转换器。

CANET-I/II 适配器的转换效率达到 CAN 的理论极限为 6500 帧/S(1Mbps 扩展帧下测的),适合 CAN 的低速到高速的所有应用。

1.2 性能指标

- ◆ 32位ARM9处理器,内嵌实时操作系统;
- ◆ 流量6500帧/S(1Mbps下扩展帧,远超同类产品包括ZLG CANET-100T CANET-200T);
- ◆ 采用实时操作系统配合自适应流量控制算法,适合对实时性要求苛刻的控制系统使用。
- ◆ CAN-bus接口采用光电隔离,隔离模块绝缘电压: 2500V;
- ◆ 10M/100M以太网接口(RJ45);
- ◆ 可使用配置软件对CAN和以太网的工作参数进行设定。
- ◆ CAN2.0A和CAN2.0B协议;
- ◆ 支持1-2路CAN控制器,每路均可单独控制;
- ◆ 屏蔽或非屏蔽双绞线;
- ◆ CAN控制器波特率在5Kbps~1Mbps之间可选;
- ◆ 单路总线上最多可接110个节点,最长通讯距离10公里;
- ◆ 9-40V宽电压输入,并带有浪涌、过流、反接保护;
- ◆ 工作温度: -20℃~+70℃;
- ◆ 存储温度: -55℃~+85℃;
- ◆ 尺寸: 108mm*82mm*28mm

1.3 应用领域

CAN-bus 产品开发; CAN-bus 数据分析; CAN-bus 主从式网络; CAN-bus 教学应用; CAN-bus 网关、网桥; CAN-bus 工业自动化控制系统; 智能楼宇控制、数据广播系统等 CAN-bus 应用系统;

1.4 订购信息

型号	工作温度	说明
CANET-I	-20°C∼+70°C	单通道 CAN 转以太网适配器
CANET-II	-20°C∼+70°C	双通道 CAN 转以太网适配器

http://www.embedded-soc.com/

1.5 产品销售清单

- [1] CANET-I/II CAN 转以太网适配器;
- [2] 光盘1张(配置软件、测试软件、用户手册、Visual C++, C++Builder 等例程);

1.6 技术支持与服务

一年免费维修、升级,终身维修。

- 支持邮箱: <u>embededperfect@163.com</u>
- 支持网站: <u>http://www.embedded-soc.com</u>

第二章 硬件连接

2.1 硬件接口描述

CANET-I/II CAN转以太网适配器集成1-2 路CAN 通道,每一路通道都是独立的,可以用于连接一个 CAN-bus 网络或者CAN-bus 接口的设备。其接口布局如下:

图 1 CANET-I CAN转以太网适配器外围端子

2 路CAN-bus 通道由1 个10 Pin接线端子左边引出,右边为一个4 Pin接线端子(配置和电源输入), 一个标准的RJ45以太网接口。引脚得详细定义如表格 1 所示。

表格 1 CANET-1/11 CAN转以太网适配器的CAN-bus 信号分配(CANET-1型的CAN1接口悬空)

引脚	端口	名称	功能	
1		CANL0	CANL0 信号线	
2		R0-	终端电阻(内部连接到CANL0)	
3	CANO	FG	屏蔽线 (FG)	
4		R0+	终端电阻(内部连接到CANH0)	
5		CANH0	CANH0 信号线	
6		CANL1	CANL1 信号线	
7	CAN1	R1-	终端电阻(内部连接到CANL1)	
8		FG	屏蔽线 (FG)	
9		R1+	终端电阻(内部连接到CANH1)	
10		CANH1	CANH1 信号线	
1		0V	电源输入负端	
2	而署	+VS	电源输入正端(7-40V直流)	
3	HL.E.	DEF+	出厂配置恢复端	
4		DEF-	出厂配置恢复端	

DEF+、DEF-为出厂配置恢复端,用户可以在未供电时使用金属导线连接DEF+、DEF-端,使其短路,然后上电,5秒钟后再去掉供电,去掉连接的金属导线,使DEF+、DEF-端开路,这时设备回车出厂时的设置。CANET-I型的CAN1接口悬空。

2.2 系统连接

CANET-I/II CAN转以太网适配器和CAN-bus 总线连接的时候,仅需要将CANL 连CANL, CANH 连 CANH 信号。CAN-bus 网络采用直线拓扑结构,总线的2个终端需要安装120Ω 的终端电阻;如果节点数 目大于2,中间节点不需要安装120Ω的终端电阻。对于分支连接,其长度不应超过3米。CAN-bus 总线的 连接见图 3 所示。

图 3 CAN-bus 网络的拓扑结构

2.3 总线终端电阻

为了增强 CAN 通讯的可靠性, CAN 总线网络的两个端点通常要加入终端匹配电阻, 如图 3 所示。 终端匹配电阻的值由传输电缆的特性阻抗所决定。例如双绞线的特性阻抗为 120Ω, 则总线上的两个端点 也应 120Ω 终端电阻。当 CANET-I/II CAN 转以太网适配器位于 CAN-bus 网络的一个端点上时, 需要在外 部端子上安装 120Ω 终端电阻, 即在"R-"引脚和"R+"引脚接入终端电阻。

第三章 参数设置

3.1 PC 机与模块网段检测

用户在使用软件进行配置前,需要保证用户的PC 机内有以太网卡,而且其配置的PC机与CANET-I/II 适配器同在一个网段内。CANET-I/II适配器在出厂时设定了一个默认的IP 地址(192.168.0.101)和网络掩码(255.255.255.0),用户可以计算一下看是否和CANET-I/II适配器在同一网段,公式为:用户PC 机IP 地址与上用户PC机网络掩码,如果结果等于CANET-100/CANET-100 适配器的IP 地址与上CANET-I/II适配器的网络掩码(按出厂设定的值计算为192.168.0.0),那恭喜你,以下关于PC 机网络设置的内容你就不必看了。如果不相对,那以下PC 机网络设置的内容对你来说就非常重要了。

以下的内容是说明:如何使用户的PC 机与CANET-I/II适配器处于同一网段。

3.2 Windows98/Me 网络设置

如果用户使用的操作系统是Windows 98/ME,用户首先进入操纵系统,然后使用鼠标点击任务栏的"开始"->"设置"->"控制面板",双击"网络"图标,您会看到如下界面。

请选择"配置"页面的"TCP/IP"的属性,可能您会看到不止一个"TCP/IP",请选择连接CANET-I/II适配器的网卡的"TCP/IP"属性界面如下:

网络	TCP/IP 属性			?×
配置 标识 访问控制 已经安装了下列网络组件(如): Microsoft 网络用户 ■D-Link DFE-530TX PCI Fast Ethernet Adapter (R) ■IRXON SMH-IR650 IrDA Adapter TCP/IP -> D-Link DFE-530TX PCI Fast Ethernet マ快速红外线协议 -> IRXON SMH-IR650 IrDA Adapte 本 添加(A) microsoft 网络用户 文件及打印共享(p) 说明	 第定 网关 IP 地址可以E IP 地址, 面的空格处。 ① 自动获 ① 自动获 □ 指定 II IP 地址 子网捷 	高級 WIN: 自动分配给该计 向网络管理员到 取 IP 地址 ①) P 地址 <u>③</u> 止 ①): [;码 ①): [NetBIOS 5 配置 算机。如果网络 索要地址,然后和	DNS 配置 IP 地址 没有自动指 各其键入到下 .55 .0
确定 取消			确定	取消

请依图所示,在"IP 地址"页选择"指定IP 地址",并填入IP 地址192.168.0.55 ,子网掩码 255.255.255.0 。点击该页面的"确定",依提示重启PC 机。

3.3 Windows2000 网络设置

如果用户使用的操作系统是Windows 2000/XP ,那就有两种方法,一种是增加本机IP 地址,另一种 是修改本机IP 地址。

3.3.1 增加本机IP 地址

第一种方法,增加本机IP 地址。

假定用户的PC 机的IP 地址时192.168.2.3 ,而模块的IP 地址时默认IP 192.168.0.101 。用户进入操作 系统后,然后右击网上邻居->属性。这时网络连接窗口被打开,然后选择本地连接图标(注意,该连接 是连接模块网络的连接,如果用户是多网卡的,可能会有多个本地连接,请注意选择),再右击本地连接 ->属性。这时弹出下面窗口"本地连接 属性"。

我们选择"常规"页面下的"此连接使用下列项目(D):"的"Internet 协议(TCP/IP)"项。点击属性弹出以下窗口 "Internet 协议(TCP/IP)属性"

常规 身份验证 高级	Internet 协议 (TCP/IP) 庫性 常规	3 3
连接时使用:	如果网络支持此功能,则可以获取自动指派的 IP 设置。否则, 您需要从网络系统管理局外获得活当的 IP 设置。否则,	le,
■ D-Link DFE-530TX PCI Fast Ethernet Adapter (r: 配置 (c) 此连接使用下列项目 (0):	○ 自动获得 IP 地址(2):	
 ■ microsoft MshByQi+AbrjuHat,共学 ■ QoS 数据包计划程序 ■ Thternet 协议 (TCP/IP) 	IP 地址(1): 192.168.2.3 子网掩码(1): 255.255.255.0 默认网关(0): 192.168.2.254	
安装(图) 卸载(U) 属性(B) 说明 允许您的计算机访问 Microsoft 网络上的资源。	 ○ 自动获得 INS 服务器地址 (2): ● 使用下面的 DNS 服务器地址 (2): 首选 DNS 服务器 (2): 192.168.2.1 备用 DNS 服务器 (4): 192.168.2.2 	
▶ 连接后在通知区域显示图标 (1)		· · · · · · · · · · · · · · · · · · ·

点击该窗口的"高级(Y)…"按钮,这时又会弹出下面窗口"高级TCP/IP设置"。在该窗口的 "IP 设置"页面"IP 地址(R)"栏点击添加按钮。这时又弹出以下窗口"TCP/IP地址"。

高级 TCP/IP 设置	<u>?</u> ×
IP 设置 DNS WINS 送项)	r
_ IP 地址 (E)	
IP 地址 子网掩码	
<u>192.168.2.3</u> 255.255.255.0	
1	
添加(<u>k</u>) 编辑(<u>c</u>) 删除(<u>y</u>)	
网关跃点数	
192.168.2.254 自动	
, 添加ℚ)」编辑(Ⴂ)」 删除(@)	ТСРЛР ИХИН ? 🔀
└── 自动跃点计数 00 ──────	IP ±#t±+(I): 192 .138 . 0 . 55
接口跃点数 (N)	
	子网掩码(≦): 255 .255 .0
20.00	确定 取消
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	

然后按上内容填入,按添加按钮即可。在退出时请按确定。现在,您就可以设置CANET-I/II 适配器了!

3.3.2 修改本机IP 地址

第二种方法,修改本机 IP 地址。用户首先进入操纵系统,然后使用鼠标点击任务栏的 "开始"->"设置"->"控制面板"(或在"我的电脑"里面直接打开"控制面板"),双击"网络和 拨号连接"(或"网络连接")图标,然后单击选择连接 CANET-I/II 适配器的网卡对应的"本 地连接",单击右键选择"属性"在弹出的"常规"页面选择"internet 协议(TCP/IP)",查看其"属 性",您会看到如下页面,请按图所示,选择"使用下面的 IP 地址",并填入 IP 地址 192.168.0.55,子网掩码 255.255.255.0,默认网关 192.168.0.1 (DNS 部分可以不填)。点 击该页面的"确定"及"本地连接属性"页面的确定,等待系统配置完毕。

Internet 协议 (TCP/IP)	属性 ?区							
常规								
如果网络支持此功能,则可以获取自动指派的 IP 设置。否则, 您需要从网络系统管理员处获得适当的 IP 设置。								
○ 自动获得 IP 地址(0)								
┌─── 使用下面的 IP 地址(S):								
IP 地址(I):	192 .168 . 0 . 55							
子网推码(U):	255 .255 .255 . 0							
默认网关 (2):	129 .168 . 0 . 1							
◯ 自动获得 DNS 服务器地划	£@)							
● 使用下面的 DNS 服务器比	也址 (2):							
首选 DNS 服务器 (P):	192.168.0.2							
备用 DINS 服务器(A):	192 .168 . 0 . 1							
高级 (2)								
	确定 取消							

现在,您就可以设置 CANET-I/II 适配器了!

3.4 配置软件CANET-I/II Config

运行CANET-I/II Config,进行适配器的工作参数设置。软件界面如下图所示:

🚸 CANEI-I/II Config 🗤 .embedded-soc.com 🛛 📘 🔀									
Conncet(连接)									
Device IP Address(设备 IP地址): 192.168.0.101 [Connect(连接)]									
Setup(参数设置) Ethernet (以太网)									
HostIP(主机IP地址): 192 : 168 : 0 : 55 Write(写入)									
HostUdpPort(主机端口): 4800 Default(默认)									
DevIP(设备IP地址): 192 : 168 : 0 : 101									
DevUdpPort(设备端口): 4000									
CAN0(0)通道) CAN1(1通道)									
AccCode(验收码): 0x 00000000 AccCode(验收码): 0x 00000000									
(AccMask)屏蔽码: 0x FFFFFFF (AccMask)屏蔽码: 0x FFFFFFF									
(Filter Mode)滤波方式: Single 💽 (Filter Mode)滤波方式: Single 💽									
(BTR0)定时器0: 0x 00 (BTR0)定时器0: 0x 00									
(BTR1)定时器1: 0x 14 (BTR1)定时器1: 0x 14									
Self TX-RX (自发自收)□ Self TX-RX (自发自收)□									

注: 上述参数就是出厂配置的默认参数。

3.4.1 软件操作

1) Connect 按钮:填入设备IP 地址,然后点击Connect 按钮。

注1: 如果客户从未修改过设备IP 参数,则IP 参数就是出厂默认值192.168.0.101 注2: 请事先设置运行此软件的电脑的IP 地址和设备在同一个网段即可,如192.168.0.xxx 。 注3: 连接与配置时,设备使用的端口号为3000 。

2) Read 按钮: 会将当前内部的参数都读出并显示。

3) Write 按钮:将界面上的参数写入到设备中。这些参数会被保存到内部Atmel DataFlash 中,会在每次上电时提取。注意参数写入后,设备将需要几秒的时间重新初始化。

4) Default 按钮: 将界面上的参数修改为出厂默认的参数

3.2.2 设备参数描述

1) HOST IP: 用于通讯转发的主机 IP 地址。

2) HostUdpPort: 用于通讯转发的主机 IP 端口。

适配器只有接收到从这个IP 地址和端口发来的数据,才能转发到CAN 总线;同时, CAN 总线端过来的数据,将通过以太网UDP 方式发到这个IP 地址和端口。

3) Dev IP: 适配器的IP 地址。

4) DevUdpPort: 适配器用于UDP 通讯的端口号。

主机必须通过UDP 协议发送数据到这个IP 地址和端口,设备才能接收到。该端口号为 CAN0 通道的端口号。CAN1 通道的端口号为该值加1。如:设置值为4000,则CAN0 通 道的端口号为4000,CAN1 通道的端口号为4001。注:因以太网TCP/UDP 协议中,很多 端口号已经被占用,所以这些端口号不能被使用。建议使用4000以后的端口号。

5)AccCode: 过滤验收码。

填充数据格式为16 进制形式字节从左到右分别命名为ACR0、ACR1、ACR2 和ACR3, 位序 列为高位到低位。

验收码的设置详见产品光盘中SJA1000中文手册的32-35页。

6) AccMask: 验收屏蔽码。

填充数据格式为16 进制形式。字节从左到右分别命名为AMR0、AMR1、AMR2 和AMR3, 位 序列为高位到最低位。

屏蔽码的设置详见产品光盘中SJA1000中文手册的32-35页。

7) **Filter Mode**: 转换器接收CAN 总线数据时, CAN 总线侧报文的滤波方式。单滤波或双 滤波可选。

8) BTR0/BTR1: CAN 总线的波特率, BTR0/BTR1 就是适配器中 CAN 总线的波特率 位定时器。几种常见的波特率设置如下:

CAN 波特率	BTR0(定时器 0)	BTR1(定时器 1)
5Kbps	0xBF	0xFF
10Kbps	0x31	0x1C
20Kbps	0x18	0x1C
40Kbps	0x87	0xFF
50Kbps	0x09	0x1C
80Kbps	0x83	0Xff
100Kbps	0x04	0x1C
125Kbps	0x03	0x1C
200Kbps	0x81	0xFA
250Kbps	0x01	0x1C
400Kbps	0x80	0xFA

500Kbps	0x00	0x1C
666Kbps	0x80	0xB6
800Kbps	0x00	0x16
1000Kbps	0x00	0x14

3.4 测试软件CANET-I/II Tester

-	CANET	-I/II Test	er www.e	nbedded-s	DC.COM				X	
	E接									
Į į	[
	反达致婚姻 帧类型: 标准帧 ▼ 帧格式: 数据帧 ▼ 帧ID: 0x FFFFFFF									
	数据:01	02 03 04 05 06 0	17.08 发送	总帧数 1	巾齿上	⇒帧的间隔:	10 ms	「	1	
						VIX HVI ATIA				
	CANQ通道信息 序号 传输方向 帧ID 帧类型 帧格式 数据长度 数据									
								□显示CANO通道数据		
	AN1通道伯	言息								
	序号 传输方向 帧ID 帧类型 帧格式 数据长度 数据									
								L 显示CAN1通道数据		
CANO)发送的总	帧数:0	CANO接受(的总帧数:0	CAN	1发送的总帧数	ζ:Ο CA	N1接受的总帧数:0		

用户可以使用我们提供的测试软件进行初期的调试。(注意 CANET-I 支持 CAN0 通道一个通道, CANET-II 才支持 CAN0 和 CAN1 二个通道)。

测试软件可以对发送和接受的帧进行解析并显示出来,也可以对发送和接受到得帧进行统计。

第四章 通信转换规约

4.1 转换格式规约

UDP-->CAN : 发送出去的 UDP 包

CAN-->UDP: 接收到的 UDP 包

注: 在CANET-II 中, 如果希望一个UDP 包同时被2 个CAN 通道进行发送, 请发往端口号 3001 。

1) 帧信息帧信息 Frame Info: 一个字节,该字节的 bit 定义如下

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
FF	RTR	保留	保留	DLC3	DLC2	DLC1	DLC0

FF:标准帧和扩展帧的标识, 0 为标准帧,1 为扩展帧。 RTR:远程帧和数据帧的标识, 0 为数据帧,1 为远程帧。

DLC3~DLC0: 标识该 CAN 消息帧中的有效数据长度,最多 8 个。

2) ID 域

CAN 消息帧的 ID 填充域, 共4 个字节。当为标准帧的时候, 占用后2 个字节。只有 ID0, ID1, 以及 ID2 的高5 位无效, 补0。

举例:当ID=0x03FF的时候,按如下方式填充。

00h 00h 03h FFh

当为扩展帧的时候,占用4个字节。ID0的高3位无效,补0。 举例:当ID=0x12345678的时候,按如下方式填充

the second second			
126	21h	56h	78h
1211	2411	5011	7011

3) 数据域

D0 D1 D2 I	D3 D4	D5	D6	D7
------------	-------	----	----	----

根据 CAN 消息的定义,一个 CAN 帧中,最多可以包含 8 个字节的数据。当该 CAN 帧不 需要 8 个字节的时候,余下的字节补 0。

注意: 需要在 FrameInfo 字节中指明有效数据个数。举例: FrameInfo 中的 DLC3-0 =8, 表明有 8 个数据有效时, 按如下表示

11h	22h	33h	44h	55h	66h	77h	1 88ł	ı				
FrameInfo 中的 DLC3-0 =6,表明有 6 个数据有效时,按如下表示												
11h	22h	33h	44h	55h	66h	00h	ı 00ł	ı				
I) CAN 消息帧举例 以下例子是一个扩展格式的数据帧, ID 为 0x12345678 , 包含 8 个数据字节, 数据为 (11h,22h,33h,44h,55h,66h,77h,88h)的CAN 帧的表示方式												
88h	12h	34h	56h	78h	11h	22h	33h	44h	55h	66h	77h	88h
以下例子是一个标准数据帧, I D 为 0x3ff, 包含 6 个数据字节,数据为(11h,22h,33h,44h,55h,66h)的CAN帧的表示方式												
06h	00h	00h	03h	ffh	11h	22h	33h	44h	55h	66h	00h	00h

5) 注意事项

CANET-I/II 适配器的转换效率达到 CAN 的理论极限为 6500 帧/S (1Mbps 扩展帧下测 的),适合 CAN 的低速到高速的所有应用。

用户在使用 PC 机发送 UDP 包时,每个 UDP 包中 CAN 帧数量不能大于 40 帧! 当发 送完一个含有 40 个 CAN 帧的 UDP 包后,应适当延时,再发送下一个 UDP 包。当 CAN 总 线速率越低,延时等待时间越长。

4.2 软件编程示例

光盘中附带VC, BC例程源代码。

附录

1. CAN2.0B标准帧

CAN 标准帧信息为11个字节,包括两部分:信息和数据部分。前3个字节为信息部分。

	7	6	5	4	3	2	1	0		
字节1	FF	RTR	Х	Х	DLC (数据长度)					
字节2		(报文词	只别码)		ID.10-ID.3					
字节3		ID.2-	ID.0	Х	Х	Х	Х			
字节4	数据1									
字节5	数据2									
字节6	数据3									
字节7	数据4									
字节8	数据5									
字节9	数据6									
字节10	数据7									
字节11	数据8									

字节1 为帧信息。第7 位 (FF) 表示帧格式, 在标准帧中, FF=0; 第6 位 (RTR) 表示帧的类型, RTR=0 表示为数据帧, RTR=1 表示为远程帧; DLC 表示在数据帧时实际的数据 长度。字节2、3 为报文识别码, 11 位有效。字节4~11 为数据帧的实际数据, 远程帧时无效。

2. CAN2.0B扩展帧

扩展帧CAN 扩展帧信息为13 个字节,包括两部分,信息和数据部分。前5个字节为信息部分。

	7	6	5	4	3	2	1	0			
字节1	FF	RTR	Х	Х		DLC (数据长度)					
字节2	(报文识别码) ID.28-ID.21										
字节3		ID.20-ID.13									
字节4		ID.12-ID.5									
字节5		ID.4-ID.0 X X X									
字节6	数据1										
字节7	数据2										
字节8		数据3									
字节9		数据4									
字节10	数据5										
字节11	数据6										
字节12	数据7										
字节13	数据8										

字节1 为帧信息。第7 位(FF)表示帧格式,在扩展帧中,FF=1;第6 位(RTR) 表示帧的类型,RTR=0 表示为数据帧,RTR=1 表示为远程帧;DLC 表示在数据帧时实际 的数据长度。字节2~5 为报文识别码,其高29 位有效。字节6~13 为数据帧的实际数据, 远程帧时无效。